Review for Quiz 5 (7.1 to 7.2)

Part 1: Calculator

- 1. Find an angle that is coterminal with 130° .
- 2. Convert an angle of 15 radians to degrees. Leave your answer as an exact value.
- 3. Solve $\sin \theta = -\frac{1}{5}$ where $0 \le \theta \le 2\pi$.
- 4. On the interval $[0, 2\pi]$, state the interval where the function $f(x) = \sqrt{\frac{3}{\cos x}}$ is defined.
- 5. If $P(\theta)$ is a point on the unit circle, then P(12) appears in which quadrant?
- 6. A circle with a radius of 20 cm and a central angle of 126° subtends the arc AB. Find the length of arc AB.
- 7. If $\cos\theta > 0$ and $\csc\theta < 0$, then the angle θ appears in which quadrant?
- 8. Find an angle coterminal with $-\frac{27\pi}{11}$.
- 9. If a point with the coordinates $\left(\frac{3}{5}, y\right)$ is on the unit circle, find the value(s) of y.
- 10. Explain why the expression $\cos(\theta \pi)$ is equivalent to $-\cos\theta$.
- 11. On the interval $[0, 2\pi]$, for what values of x is the function $y = \sec x$ undefined?

Part 2: Non-Calculator

- 1. Convert the angle 72° to radians. Leave your answer as a fraction in terms of π .
- 2. What is the exact value of $\sin^2(45^\circ) + \cos^2(60^\circ)$?
- 3. Convert the angle 17° to radians. Leave your answer as a fraction in terms of π .
- 4. What is the value of $\sin^2(112^\circ) + \cos^2(112^\circ)$?
- 5. What is the maximum value of $6(\cos^2 x \sin^2 x) 3$. Explain your reasoning.
- 6. Solve for x: $\sin^2 x 3\cos x = 3$ $(0 \le x \le 2\pi)$. (Hint: Use the fact that $\sin^2 x + \cos^2 x = 1$)

7. Solve for x:
$$\tan^2 x = \frac{\sqrt{3}}{3} \cdot \tan x$$
, where $x \in \mathbb{R}$.

- 8. If $\sin \theta = \frac{5}{7}$ and $\cos \theta < 0$, find the exact value of $\cot \theta$.
- 9. Find the interval(s) where $\sin\theta < \cos\theta$, if $0 \le \theta \le 2\pi$. Justify your response with an explanation or with a diagram.
- 10. Solve for θ : $\tan 3\theta = -1$, where $0 \le \theta \le 2\pi$.

11. Solve for
$$\theta$$
: $\sin 2\theta = \frac{\sqrt{3}}{2}$, where $\theta \in \mathbb{R}$.

Part 3: Calculator

- 1. Find an angle that is coterminal with $\frac{13\pi}{7}$.
- 2. Convert an angle of 3 radians to degrees. Leave your answer as an exact value.
- 3. Solve $\cos\theta = -\frac{1}{7}$, where $0 \le \theta \le 2\pi$.
- 4. On the interval $[0, 2\pi]$, state the interval where the function $f(x) = \sqrt{2\sin x}$ is defined.
- 5. If $P(\theta)$ is a point on the unit circle, then P(18) appears in which quadrant?
- 6. A circle with a radius of 5 cm and a central angle of 80° subtends the arc AB. Find the length of arc AB.
- 7. If $\sin\theta > 0$ and $\tan\theta < 0$, then the angle θ appears in which quadrant?

8. Find an angle coterminal with
$$\frac{7\pi}{9}$$
.

9. If a point with the coordinates $\left(x, -\frac{5}{13}\right)$ is on the unit circle, find the value(s) of x.

10. Explain why the expression $\sin\left(\theta - \frac{\pi}{2}\right)$ is equivalent to $-\cos\theta$.

11. On the interval $[0, 2\pi]$, for what values of x is the function $y = \csc x$ undefined?

Part 4: Non-Calculator

- 1. Convert the angle 12° to radians. Leave your answer as a fraction in terms of π .
- 2. What is the value of $\sin^2(30^\circ) + \cos^2(60^\circ)$?
- 3. Convert the angle 9° to radians. Leave your answer as a fraction in terms of π .
- 4. What is the value of $\sin^2(5) + \cos^2(5)$?
- 5. What is the maximum value of $2(\cos^2 x \sin^2 x) 4$. Explain your reasoning.
- 6. Solve for x: $\cos^2 x 3\sin x = 3$ $(0 \le x \le 2\pi)$. (Hint: Use the fact that $\sin^2 x + \cos^2 x = 1$)
- 7. Solve for x: $\tan^2 x = \sqrt{3} \cdot \tan x$, where $x \in \mathbb{R}$.
- 8. If $\cos\theta = -\frac{5}{7}$ and $\tan\theta < 0$, find the exact value of $\csc\theta$.
- 9. Find the interval(s) where $\sin\theta > \cos\theta$, if $0 \le \theta \le 2\pi$. Justify your response with an explanation or with a diagram.
- 10. Solve for θ : $2\cos 2\theta 1 = 0$, where $0 \le \theta \le 2\pi$.
- 11. Solve for θ : $\cot 2\theta = \sqrt{3}$, where $\theta \in \mathbb{R}$.