Review for Quiz 5 (7.1 to 7.2)

Part 1: Calculator

1. Find an angle that is coterminal with 130°.
2. Convert an angle of 15 radians to degrees. Leave your answer as an exact value.
3. Solve $\sin \theta=-\frac{1}{5}$ where $0 \leq \theta \leq 2 \pi$.
4. On the interval $[0,2 \pi]$, state the interval where the function $f(x)=\sqrt{\frac{3}{\cos x}}$ is defined.
5. If $P(\theta)$ is a point on the unit circle, then $P(12)$ appears in which quadrant?
6. A circle with a radius of 20 cm and a central angle of 126° subtends the $\operatorname{arc} \mathrm{AB}$. Find the length of arc AB.
7. If $\cos \theta>0$ and $\csc \theta<0$, then the angle θ appears in which quadrant?
8. Find an angle coterminal with $-\frac{27 \pi}{11}$.
9. If a point with the coordinates $\left(\frac{3}{5}, y\right)$ is on the unit circle, find the value(s) of y.
10. Explain why the expression $\cos (\theta-\pi)$ is equivalent to $-\cos \theta$.
11. On the interval $[0,2 \pi]$, for what values of x is the function $y=\sec x$ undefined?

Part 2: Non-Calculator

1. Convert the angle 72° to radians. Leave your answer as a fraction in terms of π.
2. What is the exact value of $\sin ^{2}\left(45^{\circ}\right)+\cos ^{2}\left(60^{\circ}\right)$?
3. Convert the angle 17° to radians. Leave your answer as a fraction in terms of π.
4. What is the value of $\sin ^{2}\left(112^{\circ}\right)+\cos ^{2}\left(112^{\circ}\right)$?
5. What is the maximum value of $6\left(\cos ^{2} x-\sin ^{2} x\right)-3$. Explain your reasoning.
6. Solve for $x: \sin ^{2} x-3 \cos x=3(0 \leq x \leq 2 \pi)$. (Hint: Use the fact that $\left.\sin ^{2} x+\cos ^{2} x=1\right)$
7. Solve for $x: \tan ^{2} x=\frac{\sqrt{3}}{3} \cdot \tan x$, where $x \in \mathbb{R}$.
8. If $\sin \theta=\frac{5}{7}$ and $\cos \theta<0$, find the exact value of $\cot \theta$.
9. Find the interval(s) where $\sin \theta<\cos \theta$, if $0 \leq \theta \leq 2 \pi$. Justify your response with an explanation or with a diagram.
10. Solve for $\theta: \tan 3 \theta=-1$, where $0 \leq \theta \leq 2 \pi$.
11. Solve for $\theta: \sin 2 \theta=\frac{\sqrt{3}}{2}$, where $\theta \in \mathbb{R}$.

Part 3: Calculator

1. Find an angle that is coterminal with $\frac{13 \pi}{7}$.
2. Convert an angle of 3 radians to degrees. Leave your answer as an exact value.
3. Solve $\cos \theta=-\frac{1}{7}$, where $0 \leq \theta \leq 2 \pi$.
4. On the interval $[0,2 \pi]$, state the interval where the function $f(x)=\sqrt{2 \sin x}$ is defined.
5. If $P(\theta)$ is a point on the unit circle, then $P(18)$ appears in which quadrant?
6. A circle with a radius of 5 cm and a central angle of 80° subtends the arc AB . Find the length of arc AB.
7. If $\sin \theta>0$ and $\tan \theta<0$, then the angle θ appears in which quadrant?
8. Find an angle coterminal with $\frac{7 \pi}{9}$.
9. If a point with the coordinates $\left(x,-\frac{5}{13}\right)$ is on the unit circle, find the value(s) of x.
10. Explain why the expression $\sin \left(\theta-\frac{\pi}{2}\right)$ is equivalent to $-\cos \theta$.
11. On the interval $[0,2 \pi]$, for what values of x is the function $y=\csc x$ undefined?

Part 4: Non-Calculator

1. Convert the angle 12° to radians. Leave your answer as a fraction in terms of π.
2. What is the value of $\sin ^{2}\left(30^{\circ}\right)+\cos ^{2}\left(60^{\circ}\right)$?
3. Convert the angle 9° to radians. Leave your answer as a fraction in terms of π.
4. What is the value of $\sin ^{2}(5)+\cos ^{2}(5)$?
5. What is the maximum value of $2\left(\cos ^{2} x-\sin ^{2} x\right)-4$. Explain your reasoning.
6. Solve for $x: \cos ^{2} x-3 \sin x=3(0 \leq x \leq 2 \pi)$. (Hint: Use the fact that $\left.\sin ^{2} x+\cos ^{2} x=1\right)$
7. Solve for $x: \tan ^{2} x=\sqrt{3} \cdot \tan x$, where $x \in \mathbb{R}$.
8. If $\cos \theta=-\frac{5}{7}$ and $\tan \theta<0$, find the exact value of $\csc \theta$.
9. Find the interval(s) where $\sin \theta>\cos \theta$, if $0 \leq \theta \leq 2 \pi$. Justify your response with an explanation or with a diagram.
10. Solve for $\theta: 2 \cos 2 \theta-1=0$, where $0 \leq \theta \leq 2 \pi$.
11. Solve for $\theta: \cot 2 \theta=\sqrt{3}$, where $\theta \in \mathbb{R}$.
